El grupo de investigación AYRNA de la Universidad de Córdoba (UCO), liderado por el investigador César Hervás, ha ideado un nuevo modelo que permite predecir la radiación solar cuyos resultados podrían ser de utilidad para la toma de decisiones en las plantas fotovoltaicas. «Cuando se usan este tipo de energías renovables que dependen de componentes aleatorias, se exige una predicción sobre cuánta energía se va a suministrar en la red para poder incluirla en la planificación del sistema eléctrico y que la producción programada iguale a la demanda esperada», explica el investigador Pedro Antonio Gutiérrez, uno de los autores de la investigación.
Una de las novedades del estudio, en el que también participa el investigador de la UCO Antonio Gómez Orellana y en el que colabora la Universidad de Ciencias y Tecnología Houari Boumediene, de Argelia, es que permite realizar estimaciones de radiación recibida sobre planos inclinados, y no solo de forma horizontal, tal y como se venía haciendo habitualmente. “Esto posibilita jugar con la inclinación de las placas solares para que, en función de la predicción, puedan orientarse a un determinado ángulo y aprovechar así la energía de forma más eficiente”, explican los investigadores.
Concretamente, el sistema permite realizar esta estimación con una hora de antelación, un intervalo de tiempo que según destacan desde el grupo de investigación «es suficiente para facilitar la gestión en la industria fotovoltaica y saber qué cantidad de energía exacta se va a suministrar a la red».
Redes neuronales evolutivas
El modelo matemático empleado para realizar las predicciones se sustenta en tres tipos de redes neuronales evolutivas, una rama de la inteligencia artificial en la que el grupo de investigación posee una dilatada experiencia. La clave es que el algoritmo de aprendizaje evoluciona iterativamente los modelos a lo largo del proceso para minimizar el margen de error, utilizando para ello operadores de mutación. “Se trata de un sistema basado en los principios de la evolución biológica, solo que, en lugar de seleccionar los mejores genes, opta por los mejores parámetros para obtener los mejores resultados”, añaden los investigadores.
La investigación se recoge en el artículo “A novel approach for global solar irradiation forecasting on tilted plane using Hybrid Evolutionary Neural Networks”, publicado en el Journal of Cleaner Production, y se enmarca dentro del proyecto Hamlet, una iniciativa en la que participan las universidades de Córdoba y Alcalá de Henares y que tiene como objetivo desarrollar algoritmos predictivos para abordar problemas relacionados con la salud y el medioambiente.
Este contenido está protegido por derechos de autor y no se puede reutilizar. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, contacte: editors@pv-magazine.com.
Al enviar este formulario, usted acepta que pv magazine utilice sus datos con el fin de publicar su comentario.
Sus datos personales solo se divulgarán o transmitirán a terceros para evitar el filtrado de spam o si es necesario para el mantenimiento técnico del sitio web. Cualquier otra transferencia a terceros no tendrá lugar a menos que esté justificada sobre la base de las regulaciones de protección de datos aplicables o si pv magazine está legalmente obligado a hacerlo.
Puede revocar este consentimiento en cualquier momento con efecto para el futuro, en cuyo caso sus datos personales se eliminarán inmediatamente. De lo contrario, sus datos serán eliminados cuando pv magazine haya procesado su solicitud o si se ha cumplido el propósito del almacenamiento de datos.
Puede encontrar más información sobre privacidad de datos en nuestra Política de protección de datos.